Towards Automated Scheduling of NASA's Deep Space Network: A Mixed Integer Linear Programming Approach

Alex Sabol**, Ryan Alimo*, Edwin Goh*, Mark Hoffmann*, Brian Wilson*, Mark Johnston*

**Computer Science & Engineering Department,

The University of Texas at Arlington

*California Institute of Technology, Jet Propulsion Laboratory

AIAA Scitech Forum, Jan 11, 2021-Jan 15, 2021

Published by the American Institute of Aeronautics and Astronautics, Inc., with permission.

Outline

- NASA's Deep Space Network
- Deep Space Network Scheduling Problem
- Mixed Integer Linear Programming
- DSN as a MILP
- Experiments and Results
- Conclusion

NASA's Deep Space Network

NASA's Deep Space Network

NASA's Deep Space Network

- High demand for DSN resources
- Constraints makes resource allocation challenging

Deep Space Network Scheduling

Mixed Integer Linear Programming(MILP)

```
min_{x} f^{T}x

subject to: A_{in}x \leq b_{in}

A_{eq}x = b_{eq}

l \leq x \leq u

x \in \mathbb{R}

x_{j} \in \{0,1\} \ for \ some \ j
```

- Process Control
- Flight Path Planning
- Risk Portfolio Optimization
- Job Shop Scheduling

DSN Scheduling as a MILP

Important Constraints

- 1. Each resource can only support one activity at any given time.
- 2. Each activity can only be scheduled to one viewperiod at any given time.
- 3. If an activity is scheduled, its tracking time must occur within a valid viewperiod.
- 4. If an activity is scheduled, it must be scheduled for at least its minimum requested tracking time, and at most its maximum requested tracking time.
- 5. An activity requires a certain amount of setup time before tracking time can occur, and teardown time after.
- 6. Activities may be 'split', i.e. not scheduled contiguously.

Problem Statement

Given a set of Resources(\mathcal{R}), Activities(\mathcal{A}), Viewperiods(\mathcal{V}), Time Epochs(\mathcal{T}), Constraints(\mathcal{C}), and Objective Function(\mathcal{C})...

...what is the optimal schedule with respect to **f**?

DSN Scheduling: Objective Functions

Objective 1: Maximize the number of scheduled activities

$$\mathbf{f} = \sum_{i=1}^{n} x_i$$

Objective 2: Maximize the amount of scheduled time

$$\mathbf{f} = \sum_{i=1}^{n} w_i x_i$$

$$x_i = \begin{cases} 1, & activity \ i \ scheduled \\ 0, & o. \ w. \end{cases}$$

Experiments and Results

- Implemented using AMPL modeling language, GUROBI solver, python AMPL API
- 86 out of 95 activities scheduled on toy problem constructed from realworld data on Week 44, 2018

Experiments and Results

- Result for Week 44, 2016.
 139 out of 286 activities
 scheduled
- Shows difficulty scaling up to full problem size

Conclusion and Future Works

- Must address curse of dimensionality(scaling)
- Must incorporate the 'splitting' of activities into the model
- Must ensure user satisfaction by analyzing from DSN users' perspective

Acknowledgements

The research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration (80NM0018D0004).

AMERICAN INSTITUTE OF AERONAUTICS AND ASTRONAUTICS